ANNUAL
DRINKING WATER
CONSUMER
CONFIDENCE
REPORT
REPORTING YEAR 2015
Meeting the Challenge

Once again the City of Dover’s Water/Wastewater Department is proud to present our annual Drinking Water Consumer Confidence Report covering the drinking water testing performed between January 1 and December 31, 2015. Dover has prepared the following report to provide information to you, the consumer, on the quality of our drinking water. Included within this report is general health information, water quality test results, how to participate in decisions concerning your drinking water, and water system contacts. Over the years we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt methods for delivering the best-quality drinking water to your homes and businesses. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all of our water users.

Please remember that we are always available to assist you should you ever have any questions or concerns about your water.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

- **Microbial Contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;
- **Inorganic Contaminants**, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;
- **Pesticides and Herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- **Organic Chemical Contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;
- **Radioactive Contaminants**, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA’s Safe Drinking Water Hotline at (800) 426-4791.

Community Participation Information

Public participation and comments are encouraged at regular meetings of The Dover City Council which meets on the 1st and 3rd Mondays of each month beginning at 7:30 p.m., at The Roy G. Crawford Center, located at 121 East 2nd Street, Dover, Ohio.
Questions?

For more information about this report, or for any questions related to your drinking water, please call Mark Keyser, Water/Wastewater Department Superintendent, at (330) 343-3443 or the Water Treatment Plant at (330) 343-4116.
Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800-426-4791) or at www.epa.gov/lead.

Benefits of Chlorination

Disinfection, a chemical process used to control disease-causing microorganisms by killing or inactivating them, is unquestionably the most important step in drinking water treatment. By far the most common method of disinfection in North America is chlorination. In fact, the filtration of drinking water plus the use of chlorine is probably the most significant public health advancement in human history.

You may not be aware of it, but every time you pour fat, oil, or grease (FOG) down your sink (e.g., bacon grease), you are contributing to a costly problem in the sewer collection system. FOG coats the inner walls of the plumbing in your house as well as the walls of underground piping throughout the community. Over time, these greasy materials build up and form blockages in pipes, which can lead to wastewater backing up into parks, yards, streets, and storm drains as well as your homes. These backups allow FOG to contaminate local waters, including drinking water. Exposure to untreated wastewater is a public health hazard. FOG discharged into septic systems and drain fields can also cause malfunctions, resulting in more frequent tank pump-outs and other expenses.

Communities spend billions of dollars every year to unplug or replace grease-blocked pipes, repair pump stations, and clean up costly and illegal wastewater spills. Here are some tips that you and your family can follow to help maintain a well-run system now and in the future:

NEVER:

• Pour fats, oil, or grease down the house or storm drains.
• Dispose of food scraps by flushing them.
• Use the toilet as a waste basket.

ALWAYS:

• Scrape and collect fat, oil, and grease into a waste container such as an empty coffee can, and dispose of it with your garbage.
• Place food scraps in waste containers or garbage bags for disposal with solid wastes.
• Place a wastebasket in each bathroom for solid wastes like disposable diapers, creams and lotions, and personal hygiene products including nonbiodegradable wipes. Items marketed as flushable still can cause sewer backups and damage to property; do not flush them.

Tap vs. Bottled

Thanks in part to aggressive marketing, the bottled water industry has successfully convinced us all that water purchased in bottles is a healthier alternative to tap water. However, according to a four-year study conducted by the Natural Resources Defense Council, bottled water is not necessarily cleaner or safer than most tap water. In fact, about 25 percent of bottled water is actually just bottled tap water (40 percent, according to government estimates).

People spend 10,000 times more per gallon for bottled water than they typically do for tap water. If you get your recommended eight glasses a day from bottled water, you could spend up to $1,400 annually. The same amount of tap water would cost about 49 cents. Even if you installed a filter device on your tap, your annual expenditure would be far less than what you’d pay for bottled water.

Tip Top Tap

Disinfect and clean the sink and drain area regularly. Also, flush regularly with hot water.

Faucets, Screens, and Aerators

Chemicals and bacteria can splash and accumulate on the faucet screen and aerator, which are located on the tip of faucets and can collect particles like sediment and minerals resulting in a decreased flow from the faucet. Clean and disinfect the aerators or screens on a regular basis.

White scaling or hard deposits on faucets and shower heads may be caused by hard water. Clean these fixtures with vinegar.

Water Filtration and Treatment Devices

A smell of rotten eggs can be a sign of bacteria on the filters or in the treatment device. The system can also become clogged over time, so regular filter replacement is important. Also remember to replace your refrigerator water filter if it has one. Maintain and adjust your water softener properly and be aware that it could make your water more corrosive.
The EPA requires regular sampling to ensure drinking water safety. The City of Dover Water/Wastewater Department conducted sampling for disinfection by-products, barium, chlorine, nitrate, sulfate, sodium, strontium, hardness, bacterial, volatile organic chemicals, and synthetic organic chemicals during 2015. Hundreds of samples were collected for different contaminants, most of which were not detected in the City of Dover water supply. The tables below show only those contaminants that were detected in the water. Although all of the substances listed here are below the Maximum Contaminant Level (MCL), we feel it is important that you know exactly what was detected and how much of each substance was present in the water.

The state requires us to monitor for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

We participated in the 3rd stage of the EPA’s Unregulated Contaminant Monitoring Rule (UCMR3) program by performing additional tests on our drinking water. UCMR3 benefits the environment and public health by providing the EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if the EPA needs to introduce new regulatory standards to improve drinking water quality. Contact us for more information on this program.

Please note that we have a current, unconditioned license to operate our water system.

Regulated Substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year Sampled</th>
<th>MCL [MRDL]</th>
<th>MCLG [MRDLG]</th>
<th>Amount Detected</th>
<th>Range Low-High</th>
<th>Violation</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2015</td>
<td>2</td>
<td>0.0661</td>
<td>NA</td>
<td>No</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Chlorine</td>
<td>ppm</td>
<td>2015</td>
<td>[4]</td>
<td>0.49</td>
<td>0.42–0.56</td>
<td>No</td>
<td>Water additive used to control microbes</td>
<td></td>
</tr>
<tr>
<td>Combined Radium</td>
<td>pCi/L</td>
<td>2013</td>
<td>5</td>
<td>1.60</td>
<td>NA</td>
<td>No</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>2015</td>
<td>10</td>
<td>0.26</td>
<td>NA</td>
<td>No</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>TTHMs [Total Trihalomethanes]-Stage 2</td>
<td>ppb</td>
<td>2015</td>
<td>80</td>
<td>11.45</td>
<td>8.5–14.4</td>
<td>No</td>
<td>By-product of drinking water disinfection</td>
<td></td>
</tr>
</tbody>
</table>

Secondary Substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year Sampled</th>
<th>SMCL</th>
<th>MCLG</th>
<th>Amount Detected</th>
<th>Range Low-High</th>
<th>Violation</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>ppm</td>
<td>2015</td>
<td>250</td>
<td>NA</td>
<td>196</td>
<td>NA</td>
<td>No</td>
<td>Runoff/leaching from natural deposits; Industrial wastes</td>
</tr>
</tbody>
</table>

Unregulated Substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year Sampled</th>
<th>Amount Detected</th>
<th>Range Low-High</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloromethane</td>
<td>ppb</td>
<td>2015</td>
<td>0.74</td>
<td>0.56–1.06</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ppb</td>
<td>2015</td>
<td>0.60</td>
<td>0.52–0.67</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ppb</td>
<td>2015</td>
<td>1.13</td>
<td>0.84–1.60</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>2015</td>
<td>15.2</td>
<td>NA</td>
<td>Naturally occurring; Runoff</td>
</tr>
</tbody>
</table>

Other Substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year Sampled</th>
<th>Amount Detected</th>
<th>Range Low-High</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness</td>
<td>ppm</td>
<td>2015</td>
<td>409</td>
<td>NA</td>
<td>Runoff/leaching from natural deposits</td>
</tr>
<tr>
<td>Strontium</td>
<td>ppb</td>
<td>2015</td>
<td>131</td>
<td>NA</td>
<td>Naturally occurring in the air, soil, foods, and drinking water</td>
</tr>
</tbody>
</table>

Tap water samples were collected for lead and copper analyses from sample sites throughout the community.
Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

LRAA (Locational Running Annual Average): The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters. Amount Detected values for TTHMs and HAAs are reported as LRAAs.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

SMCL (Secondary Maximum Contaminant Level): SMCLs are established to regulate the aesthetics of drinking water like taste and odor.