Microwave Laminate Material Considerations For Multilayer Applications

Russell R. Hornung, John C. Frankosky
Arlon, Inc.
1100 Governor Lea Road, Bear, DE 19701, USA
rhornung@arlon-med.com
jfrankosky@arlon-med.com

Abstract— RF and microwave systems have become increasingly sensitive to phase and dielectric constant variations in microwave laminates, due to the increased use of phase-fed networks, phase-steered antennas and wider temperature operating ranges. As such, today’s advanced microwave systems require a higher degree of electrical stability in order to achieve their system goals, which in turn places a higher demand on the laminate materials used in the design. Electrical phase stability, dielectric constant control, and multilayer capability require innovations in microwave laminates. This paper explores the importance of these material parameters and reveals new innovations in these materials.

I. INTRODUCTION

Electrical phase stability, dielectric constant control, thinner cores, dimensional stability, and multilayer capability continue to drive phase sensitive applications, such as radar manifold and beam-steering circuits toward greater innovations in microwave laminates [1]. The growing trend of using thinner dielectrics and finer traces is being driven by higher frequencies (Ku, K, Ka, and millimeter wave bands) or even more stringent weight requirements placed on systems [2] in avionics and space applications.

Materials that are dimensionally stable and temperature stable (electrically and mechanically), maintain excellent tolerances (thickness and dielectric constant), and have a low CTEz (coefficient of thermal expansion in the z direction) are required to satisfy the packaging requirements of multilayer space, avionic and military electronics that must endure wide temperature ranges (such as -55° to +150° C) and still maintain system capability and reliability [3]. This is an extensive list of requirements to place on a material, but these requirements are necessary to maintain the degree of electrical performance expected from beamforming networks [4], complex radar manifolds, temperature-stable antennas [5], and multilayer boards that require a high degree of reliability.

II. LIMITATIONS OF PTFE IN MULTILAYER BOARDS

Polytetrafluoroethylene (PTFE) is a near ideal material for microwave circuit boards. It is recognized for providing outstanding electrical properties at high frequencies. It withstands both very high and very low temperature; it is chemically inert and resistant to UV radiation. Its dielectric constant and loss tangent are among the lowest values for solid materials.

However, difficulties with PTFE laminates arise in manufacturing multilayer boards. PTFE has a relatively high coefficient of thermal expansion (CTE). Electrically, fiberglass reinforced PTFE-based laminates such as Arlon DiClad 880 or CuClad 217, Taconic TLY-5, and Rogers RT/duroid® 5880 provide extremely low loss characteristics. These laminates have very high amounts of PTFE and relatively low amounts of either woven fiberglass cloth or random glass fiber reinforcement.

PTFE is a relatively soft dielectric with a low bulk modulus. However, in-plane constraint from fiberglass reinforcement (either woven or nonwoven) forces thermal expansion to occur mostly in the z-axis. This characteristic affects plated through-hole (PTH) reliability. Typical z-direction CTE values for laminates described above are on the order of 200 ppm/°C; in comparison to copper plated through hole (PTH) expansion of about 18 ppm/°C. This can result in less reliable multilayer boards as a PCB is cycled through temperature putting stress on the barrel of the PTH.

For finished circuit boards exposed to wide temperature range cycling, plated through-holes are subject to tensile and compressive stresses, as the dielectric material expands and contracts at a significantly higher rate than copper. As temperature cycles continue, copper work hardens and eventually fails through fatigue in barrel cracking of plated through-holes.

Another characteristic that presents limitations in printed circuit design is dielectric constant change over their temperature. While these PTFE-based composites are considerably better than epoxy resin-based counterparts, demanding microwave frequency applications often require absolute phase stability. As the dielectric constant of the
substrate changes, electrical length of transmission elements changes, too, reducing efficiency.

![Normalized Dielectric Constant vs. Temperature](image)

Fig. 2 Normalized Dielectric Constant vs. Temperature

Many conventional PTFE-based substrate materials have a thermal coefficient of dielectric constant (TCEr) on the order of -150 ppm/°C. It is interesting to note that the TCEr is a negative number. For PTFE, as material expands, its density decreases, which helps explain this result. This is in contrast to TCEr values for epoxy (FR-4)-based materials around +600 ppm/°C. Molecular interactions in epoxy resins contribute to its rising dielectric constant with temperature. These same interactions are also responsible for its higher electrical loss over all frequencies.

III. PTFE PHASE CHANGE (MOLECULAR STRUCTURE)

PTFE is well characterized and especially notorious for a second-order phase change that occurs at about 19°C. As temperature increases or decreases through this value, there is a second-order phase change to the PTFE molecule.

As temperature increases through 19°C, the helical structure of PTFE “relaxes” slightly and induces an abrupt volume expansion of about 1.5%.

![PTFE Helical Structure](image)

Fig. 3 PTFE Helical Structure

This has implications to mechanical and electrical properties of the dielectric. Thermal expansion rates are higher at this temperature, affecting physical lengths and dimensional stability of circuits. The volume change to PTFE also sharply reduces dielectric constant.

IV. ADDITION OF CERAMICS

Earlier, the mechanical considerations for conventional PTFE/fiberglass composite dielectrics were discussed. Among other considerations are changing electrical characteristics related to the second-order phase change of PTFE. As it applies to microwave printed circuit boards (PCBs), this is known to cause decreasing electrical length over temperature (phase shift). This change in the material is highlighted in Figure 4 at 19°C.

To mitigate both mechanical and electrical effects, laminate manufacturers have incorporated microdispersed ceramic in some newer PTFE-based laminates. This drives a significant reduction in z-axis expansion. With material expansion now on the same order as copper, PTH reliability is dramatically improved.

![Dielectric Constant of Microfiber PTFE Laminate](image)

Fig. 4 Dielectric Constant of Microfiber PTFE Laminate

Products that employ this approach include Rogers RT/duroid® 6002, Arlon CLTE and CLTE-XT. These products were developed to provide consistent dielectric constant not only near the PTFE phase change but also throughout a much wider operating temperature range. In addition to dielectric constant stability, CLTE has a reputation for greater dimensional stability (registration), especially in thinner laminates.

As circuits are designed around a specific frequency, so physical circuit elements are designed around specific electrical lengths; these are measured by phase angle. Where temperature affects dielectric constant and mechanical dimensions, phase angle values of the circuit elements are also affected.

It is important to note that PTFE-based laminates generally exhibit negative coefficients of dielectric constant change over temperature (as temperature increases, dielectric constant decreases). As dielectric constant increases, electrical length decreases. Thermomechanical expansion coefficients are typically positive and electrical length increases with mechanical length. For conventional materials described earlier, temperature dependent dielectric constant coefficients are large in comparison to their mechanical counterparts, so these competing influences on electrical length are only partially offsetting.

For ceramic-filled PTFE-based materials, temperature coefficients for both mechanical expansion (10-12 ppm/°C for CLTE) and dielectric constant (-13 ppm/°C) are relatively small. The opposite signs and similar scale of these coefficients promote mutually counteractive effects with regard to electrical length, and provide a substrate material that is stable both electrically and mechanically across temperature and frequency.

V. PERFORMANCE AS A FUNCTION OF DIELECTRIC CONSTANT TOLERANCE

A phase network is designed around an effective dielectric constant. Dielectric constant is a key criterion and is used to design quarter-wave transformers as well as power dividers. As with temperature-induced change, variation in dielectric constant affects not only insertion loss but also the phase of the signal. More energy is reflected (higher S11), less energy is transmitted (S21), and relative differences in phase are a result. Designers have focused on reducing or eliminating this variable from system performance because of the degree of impact it can have on a finished circuit. As a result, tighter
tolerances are demanded of materials, because the materials continue to be a major contributor or driving force in the overall system performance.

VI. DIELECTRIC CONSTANT VARIABILITY WITHIN THE SUBSTRATE

Circuits are also designed around specific impedance values; assume 50 ohms. When dielectric constant is not as expected, impedance is no longer 50 ohms. As dielectric constant increases, impedance decreases. As dielectric constant decreases, impedance increases. Using a TDR and viewing in time (down the length of a trace), transmission lines that vary within a trace will not perform as well as lines that are stable along the trace, despite the fact that they have the same relative impedance. More energy will be reflected, resulting in higher S11 (reflected energy) and lower S21 values (through energy). Variation in line width (etching) is a contributor, but in this paper we will view it as a non-variable, to simplify the discussion. Thus, materials that have significant within-panel variability (dielectric constant varies within the panel) become troublesome in high-performance RF and microwave circuit designs.

Within-panel variability may not be a major factor on raw laminates before they are processed. If the material contains microvoids or is prone to absorbing low-surface-tension liquids, such as alcohol (which is used as a neutralizer after sodium etch surfactant laden aqueous solutions will penetrate pores and create similar loss issues and can potentially pull in liquids, such as alcohol (which is used as a neutralizer after sodium etch surface treatment), an unpredictable event can occur. The alcohol can pull along board processing chemistry that remains in the board, even after drying. This could be a contributing factor to dielectric constant variability within a panel that is not present before processing, which is very difficult to predict and even more difficult to identify.

VII. MOISTURE INGRESSION AND PROCESSING CHEMICAL ABSORPTION

The lowest-loss-tangent materials do not always make ideal laminates, because processing and fabrication can influence laminate performance in ways that would not be reflected in loss tangent measurements associated with standard IPC test methods. Moisture and processing chemical absorption play a critical role in insertion loss. A material that is viewed as low loss because of a low loss tangent may in fact have issues with moisture absorption, or insertion. Designs with many through-holes or routed areas can quickly become high-loss boards if moisture ingress/absorption is an issue.

It is also not fit for use if the resin has high moisture absorption or does not provide a robust resin-to-reinforcement interface that prevents moisture absorption. (Typical reinforcements include woven or non-woven glass.) The resin-to-reinforcement interface is critical and can be compounded by the speeds and processes associated with application of the resin to the reinforcement.

Other contributing factors include choice, composition, and treatment of any ceramics complimenting the resin, and the sizing or treatment of reinforcements that can interfere with resin interface and complicate moisture absorption.

A common area for moisture ingestion is through poor-quality holes that disturb resin-to-reinforcement or layer-to-layer interfaces. Some laminates have a broader window than others when it comes to their sensitivity to processing. Moisture ingestion and processing chemical absorption can also have a role in delamination or blistering if the laminate is exposed to rapid temperatures during post etching processes. The rapid increase in laminate temperature of more than 100° C causes accelerated evaporation of embedded moisture, which results in expansion stresses that cause separation between laminate layers or, in severe cases, cracks in the board. The integrity of the laminate after fabrication also factors into design performance and impacts insertion loss beyond the typical equations or reported datasheet values. Due diligence on final design and materials is again warranted to achieve a desired design optimum.

Porosity up to 5% with ceramic PTFE laminates at a microscopic level creates performance constraints in applications exposed to high humidity, such as in an F-18E/F in service on the deck of an aircraft carrier in the Mediterranean, South Pacific, or Arabian Sea. Microvoids existing at the filler-PTFE interface are areas where the smaller water vapor molecules (1/200 the size of water droplets) can permeate into a laminate, which isn't obvious through standard water soak tests. Water vapor will have a great effect upon the overall performance of the circuit, especially affecting loss tangent and insertion loss of the board. Low-surface-tension liquids such as organic solvents and surfactant laden aqueous solutions will penetrate pores and create similar loss issues and can potentially pull in contaminants.

VIII. CONSISTENCY OF EMBEDDED RESISTORS

With multilayer boards, discrete resistors are a packaging and reliability issue. As a result, embedded resistor technology, such as Ohmega-Ply® or TCR® foils, is frequently used to provide the resistor function of Wilkinson power dividers. These embedded resistors are also known as planar resistors, buried resistors, or integral resistors. Ohmega Technologies describes their product as a thin-film, nickel-phosphorous (NiP) alloy. They apply this at about 0.1 to 0.4 microns thick. The alloy is electro-deposited onto the rough, or tooth, side of electrodeposited copper foil. Visually, you would see copper on one side of the laminate and a darker resistive layer exposed on the other. The foil comes in various resistance values; the most common values are 25, 50, and 100 ohms per square.

The resistor-conductor composite foil is laminated with the resistive side against the dielectric laminate during manufacturing. PCB manufacturers etch copper to its final patterns and then use a second chemistry to etch away unwanted portions of the exposed resistor layer, defining resistor values and placement within conductor traces.

Consistency with embedded resistors is a key performance requirement for microwave PCBs in multilayer designs. Thermal expansion mismatches between copper, resist layer, and dielectric can cause variance in the resist layer.
the challenges faced by resistor foil manufacturers and circuit board substrate laminators is to develop materials that enhance each other’s performance and withstand the ~700° F and 400 to 1500 psi lamination cycles needed for PTFE.

Printable resistors have also been developed using ruthenium oxide (RuO₂) and carbon. Cabot Corporation also offers a nanoparticle nickel and other inorganic inks to print resistors directly onto the laminate. These materials have less exposure to PTFE/ceramic-based laminates, but continued investigation seems to be warranted.

When these integral resistors are incorporated in a multilayer design, there are several stages of manufacture where dielectric materials play a critical role. In contrast to lamination of dielectric substrates, where copper foil cladding is continuous, multilayer designs use inner layers that purposefully have had most of the copper removed through print and etch processes.

IX. DIMENSIONAL STABILITY

With multilayer boards, dimensional stability is critical. Registration and dimensional stability in the XY direction become even more critical as packages get denser, plated through-hole density increases, and stricter electrical requirements are placed on materials. Stresses inherent to some materials can also allow circuits to wander or create laminates that bow when most of the copper is removed from one side.

Boards frequently go through sequential lamination processes as they are built up into final multilayer packages. Materials that lack dimensional stability or predictable movement that can be compensated become a major processing issue as “things end up not being where they’re supposed to be.” Multiplied poor yield values could result in a very difficult and very expensive board to manufacture.

X. CONCLUSION

Microwave laminates that are multi-layered, phase sensitive, or exposed to wider temperature profiles, require careful consideration in order to deliver electrical and mechanical system performance and reliability. This includes well-known laminate properties, such as low dielectric loss, low thermal expansion, low thickness and dielectric tolerance, and low temperature sensitivity of the dielectric, but also includes other material consideration such as dimensional stability, moisture and processing sensitivity, and interaction with other technology such as embedded resistors.

To address the needs of advancing technologies that require phase-stable low-loss laminates for multilayer microwave PCB applications, recent technology developments have lead to the introduction of CLTE-XT. Technology development in improving the TCEr to levels below -10 ppm/°C for improved phase stability as well as the reduction of X and Y thermal coefficients of expansion to levels that are near the opposite polarity of the TCEr of the laminate and a Z thermal coefficient of expansion near the CTE of copper. This ensures the highest degree of electrical phase stability and mechanical reliability under thermal cycling conditions.

In addition to these improved electrical and mechanical properties, resistance to water absorption and water vapor absorption in high-humidity, higher temperature conditions are critical. Resistance to absorption of other processing fluids, in particular alcohols that are used to neutralize processing chemicals, insures virgin and processed laminates provide the same level of performance.

ACKNOWLEDGMENT

The authors wish to acknowledge the assistance and support of the EuMW2007 Steering and Technical Programme Committee as well as the Engineering and Analytical Testing Support Team at Arlon.

REFERENCES